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Abstract

We analyze simple, one-dimensional models of thermal systems with long ducts in which there is a delay due to the time it takes the fluid
to travel along the duct. A general solution of the dynamic problem of a single duct with time-dependent inlet and ambient temperatures
is obtained, and several special cases are described in detail. Of particular interest is the periodic case in which the inlet and ambient
temperatures are sinusoidal in time. Also presented is a model that includes the effect of thermal inertia of a heater located at the entrance t
a duct for which the time-dependent temperature fields for periodic heating are calculated. Periodic behavior in closed loops and open loops
with branching are also discussed.
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1. Introduction physical effects that delay can cause, the ultimate goal being
an understanding of thermal networks and the design of

In most thermal systems it is assumed that the future proper control strategies. Delay, of course, is of significance

state is determined by the present. These systems are usuallgnly in the dynamics of time-dependent systems. We will

modeled by ordinary or partial differential equations. With assume, however, that the flow is generated at a constant rate

this approach the modeling of networks of heating and by a pump or similar device, and consider only the thermal

cooling ducts with pumps, valves, heat exchangers and otheraspects of the problem.

components becomes very complicated. Some simplification

is achieved by considering the advection of the temperature

fi(_ald so that the temperatur_e at one point de_pends on _thez_ Delay equations and their applications

history of that at another. This leads to interesting dynamics

that should be taken into account in designing a thermal ) L

control system. In this paper we will focus on ducts and There are systems whose behawo_r depends significantly

networks, even though there are many other process controPn Past events or on some other function of the present state.

problems in which the sensors and actuators are separated '€S€ are modeled tiyinctional equationsin which the un-

and the signal from one and the needs of the other are shifted"OWn function occurs with different arguments. An exten-

in time. sive literature on functional equations exists (see, for exam-
This work is intended as an introduction to duct-related P'€, [1,2]); some examples are given in the upper half of Ta-

thermal problems in which the dynamic behavior of a system Pl€ 1. A special case is that dffference equations [3], in

is affected by built-in delays. A common feature of these which the unknown function is _evaluated at argumgnts of.the

problems is the finite time that a fluid takes to traverse the form (z + constant). The equation may be algebraic or dif-

length of a duct. The present goal is to determine the kind of ferential. Differential—difference equations can be classified,
as shown in the lower half of Table 1, based on the sign of

the constant. We are interested herdeatay equations[4,5]
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Nomenclature

A 4= W 2m  Greek symbols

c specificheat.................... kg—1.K—1 o convection parameter

i curre.nt R EERRRRTPRRRRS A o heat capacity parameter

I nondimensional current y heat loss parameter

L duct Iength .............................. m 0 fluid denSity ........................ hgl_3

M heatermass ... kg ; residence time . ......eeeee e s

1t massflowrate ....................... kgt & phase angle

p mass flow fraction w frequency oflin (1) . .o oo eeeeeeenns st

P perimeter of cross-section................. m o FrEQUENCY Ofag (1) « « v veeeeeeenes <l

q ratio of residence times )

0 heatrate ... ......oooeueeeeeeen... w  Subscripts

R electrical resistance..................... Q H heater

t Me . S in inlet

T temperature ... °C out outlet

Th temperature of fluid after heater......... °C 0 initial condition

TH temperature ofheater .................. °C 00 ambient

AT characteristic temperature difference... .. °C O amplitude

U heat transfer coefficient ... ...... W2.K-1 B mean value

X axial coordinate ............... ...l m ()* dimensional quantity
Table 1 flow rate of fluid is72, and the outlet temperature®g, (+*).
Functional equations and differential-difference equatigys; andr, > 0 The duct is subject to heat loss through its surface of the
Type of equation Example form UP[T* — TZ (t*)] per unit length, where the local
Algebraic x(2) = 0.5[x(t) +1] fluid temperature ig*(x*, r*) and the ambient temperature

Ordinary differential
Partial differential
Integral
Integro-differential

i) =5(t/3) —x(t —2)

ou/ot =0u/ox +u(x,t —tg)
x(0) = [ k(s)x(s) ds

i =—f, a(t—wgx@w)du

Retarded (delay) X()y=x(t—1t) —x(t—12)

Advanced y() =y +1o)
Neutral x(t) — Cx(t —tg) — Dx(t — tg) =
Mixed X(t)+ Ax(t —tg) + Bx(t +19) =0

There are mathematical aspects of delay equations, such

is T (t*). U is the overall heat transfer coefficient that is
assumed constant, artlis the perimeter at a cross section
of the ductx* is the longitude coordinate measured from the
inlet and:* is time.

We assume that the flow is one-dimensional, and neglect
axial conduction through the fluid and the duct. The govern-
ing energy balance per unit length gives

*

Mo TPACHS

[T*-TLa"]=0 (1)

as stability and chaotic behavior [6], that are of interest in Where A is the cross-sectional area of the duct ands

practical applications. Delay equations have been used in athe specific heat at constant pressure of the fluid. The
variety of different fields, such as biomedical engineering ambient temperature can be written 8% (1*) = T%, +

[7,8] and economics [9]. However, the literature contains T, *(t*) where the time-averaged and fluctuating parts have
few applications to thermal systems. One exception is in the been separated. We use the nondimensional space, time and
area of heat exchangers that have been studied by Géreckiemperature variables

et al. [5] and Huang et al. [10], among others. Zhang and o o T _ T
Nelson [11] also modeled the effect of a variable-air-volume x — — ") 2)
ventilating system on a building using delay, and Saman and L T AT

Mahdi [12] analyzed pipe and fluid temperature variations whereL is the length of the duct; = ApL/m is the time

due to flow. taken to traverse the length of the duct, i.e., the residence
time. In this section the characteristic temperature difference
AT is arbitrary. Thus, Eq. (1) becomes

aT oT

—+—+
ax Jat

)

3. Model of heat transfer in a duct
y[T —TL0]= (3)

We begin with a model of thermal effects in a constant-
area duct with a constant flow rate that is schematically whereT? (1) = T;;"(t*)/AT. The parametey = U PL/nic

shown in Fig. 1. The inlet temperature® (¢*), the mass represents the heat loss to the surroundings.
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T (%)

T (%) mwoo T(x*, 1) T, ()

Fig. 1. Flow in duct with heat loss.

temperature of the fluid entering at= 0. The temperature,
Tout(t), at the outlet section, = 1, is given by

t==x
Tin(t = De™ +ye ™" [1 VST (s)ds

forr>1

Tout(t) = z 9

t>zx out To(l—t)e "' + ye—yt fé eysTo/o(s) ds )
forr <1

T(0,t) = Tin(t) It can be observed that, after an initial transient, the inlet
\ P and outlet temperatures are related by a unit delay. The outlet

temperature is also affected by the heat loss parameter,
and the ambient temperature chanfig(z). The following
T(x,0) = To(x) are some special cases of the outlet temperature.

/

Fig. 2. Boundary and initial conditions i+ space.

T

3.1. Perfectly insulated duct

If y =0 the outlet temperature simplifies to

Using the method of characteristics [13], the first-order 7. ;) — { Tin(t—1) forr>1 (10)
partial differential equation (3) is reduced to To(1—1) forz<1
dr After the initial transient, the outlet temperature is the same
r=dt = ———r (4) as the inlet temperature but at a previous instant in time.
V[T - Too(t)]
From this, two integrals 3.2. Constant ambient temperatures
Ci=x—1, (5) For thisT/, =0, and Eq. (9) becomes
' Tin(t —De7V forr>1
T — n = 11
Co=e""T — y/eVSTéo(s) ds (6) out(£) { To(L—1t)e™?" fort<1 (1)
0 This is similar to Eq. (10), but with an exponential drop due
are obtained, and the general solution can be written as oneto heat transfer.
as a function of the other. Thus, for example, we can write o )
3.3. Periodicinlet and ambient temperature
t
T(x,t)=e ! |:f(x - +y / eV T (s) ds] @ We take
° Tin(t) =Tin + /fin sinwt (12)
where f is an arbitrary function. The boundary conditions - (t) = Toy SiN21 (13)
T(0,1) = Tin(¢) and T (x, 0) = Tp(x) are shown in Fig. 2. ®© *
Using these, the solution becomes so that Eqg. (9) becomes
Tin(t — x)e 7" +ye 7" [V T/ (s)ds (Tin + Tinsineo(t —Dle™”
T(x,ny={ fort>x , ®8) + Tooy || 2L R sin(21 + ¢)
To(x —t)e " +ye " [ge? T} (s)ds Tout(t) = forr>1 (14)
fort <x To(L—r1)e !
_r T /2 2 gj /
The ¢ < x part of the solution is applicable to the brief, + gz ToeV Yo+ 27sIN(821 + ¢7)
transient period of time in which the fluid at time= 0 has forr <1

still not left the duct. The later > x part depends on the where
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Heater Too (1)

Tin (1) Ty, (1) 1 T(x,1) Tour (1)

Fig. 3. Flow in duct with heater.

y(l—eVcos)+e72sinl
(1 —e7cos) —ye7rsinl

2 —tja [ _
tang! =~ (16) L / ef/a[u m(s)+1(s>2} ds  (20)
o

tang =

18 T =T + 2 1) - (0]

o

The outlet temperature has frequencies that come from os- . )

cillations in the inlet as well as the ambient temperatures. 7h(?) is the entrance temperature to be used instedéhof)
A properly-designed control system that senses the outletin Egs. (8) and (9) to obtain the temperature distribution in
temperature must take the frequency dependence of its amhe duct. . .

plitude and phase into account. There are several complexi- WhenT¢, =0 andTi, is constant we find that

ties that must be considered in practical applications to heat- [To(0)e~"—D/e 4 T (1 — e~ D/a)
ing or cooling networks, some of which are analyzed below. e~/ =1 2 -
J J Y Tout(?) = ;(r):t @ Jo eI (s)?dsle (21)

To(l—1t)e V" fort<1
We will now assume that both the heating and the response

. . . of the system are periodic in time. At the instant the heater
In the previous section, the inlet temperatifizgr) could switches on, the temperature distribution Ts(x). The

be varied at will. In reality though, heating or cooling is heater runs for a time interval of with 1(s) = 1 at which

usually through devices that have a finite response time. Toime it switches off. The temperature distribution at that
study this let us consider an electric heater placed at the inletjgiant isT»(x). The heater-off interval with (1) = O is 1

of the d”Ft' as shown in Fig. 3. The currentin the heater can 4; the end of which the temperature distribution goes back
beleltherz or zero. The finite mass qf the heatkf, makes it to T1(x), and the heater switches on. Being periodic, the
a first-order system. The heater raises the temperature of thefemperature distributions should satisfy

fluid from Tin (¢) to Th(z), which is the temperature just after

4. Thermal inertia and periodic heating

the heater, whildy (7) is the temperature of the heater itself. [Tin+1+ e~ 170/ (T (0) — Tin — 1}]e™7*
The nondimensional governing equations for heat transfer 12(X) = ifx<n e (22)
from the heater to the fluid and for the temperature of the Ti(x —r)e™™ ifx >0
heater are and
, 1 [Tin + e~ 27/ T5(0) — Tin}le 7™

Th—Th=«a |:TH - E(Tin + Th)i| (17) Ti(x) = if x <1 (23)

d7; 1 To(x —t2)e 72 if x> 1

H
NT =0/|:§(Tin + Th) — TH:| +1(1)? (18) Fig. 4(a) shows the spatial temperature distributions at

the instant the heater is started and when it is stopped. In
wherea’ = hyAn/me anda” = Mcn/met. hy is the heat  Fig. 4(b) the temporal behaviors of the temperature of the
transfer coefficient between the heater and the fldidl,is fluid just after the heater, = 0, and at the outlety = 1,
the heat transfer surface area, amgis the specific heat  are indicatedy = O corresponds to the instant the heater
of the material of the heater. The average fluid temperatureis switched on. In this example it appears that during the
(Tin + Th)/2 is used for the heat transfer calculation. The interval the heater is on, @ ¢ < 0.25, the temperature of
current/ (¢) is nondimensionalized byi.c AT/ R)Y/2, where the fluid at the outlet is actually decreasing. Thus there are

R is the electrical resistance of the heater. Chooifig= obvious difficulties associated with using the temperature of
i%R/mc, we havel (1) = 1 for heater on, and(r) = 0 for the outlet directly as a control signal to switch the heater off
heater off. and on.
Eliminating T4 from Egs. (17) and (18), we get
d7j dT;
ad_th +Th=Tin(1) + ﬁd—t'” +1(1)2 (19) 5. Closed loop
wherea = o”(1/o’ +1/2) andg =" (1/a’ — 1/2). Solv- In a closed loop the effect of delay at the outlet is

ing, we have immediately fed back into the inlet. Let us consider the loop
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Fig. 4. Temperatures for duct with periodic heating, (a) spatial distribution, Fig. 6. Amplitude of temperature at poit, 7p,, for a closed loop.
Ty(x) is at end of off-period andli»>(x) is at end of on-period, and Parametersyy, = y4q = 0.01, Oin = Oout= 0, Oin = Oout=1, ¢ =0,
(b) temporal dependence,= 0 is just after heater and= 1 is at end of qg=1.
duct. Parametersj = 0.25,1p = 0.5, = 0.5, Tj; = 0.5, y = 0.5.
betweeru andb by a heat exchanger, and taken out between
Qoutr(t) ¢ andd by another.

Too(t) Using Eq. (9), we can write relations between the inlet

1 and outlet of sidesc andda of the loop to get

- t
1 T.(t) = | Tp(t — D)e 7o + ypee 10! / e T) (s) ds:|
l - =1

(24)

[ 1
T,()=| T, (t - —)Mt«
q

a —b L

[ ] gt
T + g ygqae” Vi / eq”d”STéo(s)ds:| (25)

gt—1
where T,(t), Tp(t), T.(¢t) and Ty(¢t) are the temperatures

I Tous(t) at the respective pointdp(x) is the initial distribution of
‘ ’ temperature, and = t,./74,. We have ignored the initial
transient. Energy balances at the heat exchangers give
Tp(t) — Ta(t) = Qin(t) (26)
Te(1) — Ty (1) = Qout(t) (27)
1 [ where the heat rates have been nondimensionalized by
mcAT. Fig. 6 shows the amplitude response of the loop to a
periodic heat flux where

Oin(t) = Qin + éin sinwt (28)

‘ ‘ Tin(t) Qout(t) = Qout+ QoutSiN(wr + ¢) (29)
(b)

Fig. 5. (a) Closed loop, (b) open loop with branching.

The amplitude is greatest far= 1.

6. Branching
schematically shown in Fig. 5(a). The flow is pumped in a
counterclockwise direction at a constant mass flow rate Finally, we consider the branched open loop shown
a, b, c andd are four points along the loop. Heat is putin schematically in Fig. 5(b). The two branchesand b
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1/

Eig. 7. Amplitude of outlet temperaturé?out for branching. Parameters:
Tin=0,Tin=1,0=1, y, =y, =0. Results for two different values ¢f
are shown.

have different geometrical, flow and thermal characteristics.

G. Diazet al. / International Journal of Thermal Sciences 43 (2004) 249-254

7. Conclusions

Delay in thermal systems with long ducts is due to the fi-
nite time that the fluid takes to traverse its length. This delay
time becomes an important factor in dynamic problems such
as when the inlet or ambient temperature is time-dependent,
or when a sensor at one point controls an actuator at another.
Delay must be considered when modeling the system since
it can adversely affect its performance, or even contribute to
the instability of a thermal control system.

We have discussed the behavior of some ducted systems
along with the effects of thermal inertia, closed loops and
branching. The ultimate objective is to understand and
design better heating and cooling networks for buildings and
districts which are often very complicated.
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t

/ e’ T, ,(s)ds

Tout(r) = P|:Tin(f —De 7 + yue !
t—1

1
+@1—=p) Tm(t - —>th
q
qt
+ qype” ! / e T () ds] (30)
qt—1
where the mass flow fraction is
Mg
= 31
P = e s (31)
and the ratio of residence times is
== (32)
Tp

The parameters in each branch are taken to be different.

As an example we consider a sinusoidal inlet temperature
whereT, is given by Eq. (12). For simplicity we take, =
yp = 0. The outlet temperaturdpy(r), is also sinusoidal,
but the interference between the flows which come through
the two different branches affect its amplitude and phase.
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