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Effect of delay in thermal systems with long ducts
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Abstract

We analyze simple, one-dimensional models of thermal systems with long ducts in which there is a delay due to the time it take
to travel along the duct. A general solution of the dynamic problem of a single duct with time-dependent inlet and ambient tem
is obtained, and several special cases are described in detail. Of particular interest is the periodic case in which the inlet an
temperatures are sinusoidal in time. Also presented is a model that includes the effect of thermal inertia of a heater located at the
a duct for which the time-dependent temperature fields for periodic heating are calculated. Periodic behavior in closed loops and o
with branching are also discussed.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

In most thermal systems it is assumed that the fu
state is determined by the present. These systems are u
modeled by ordinary or partial differential equations. W
this approach the modeling of networks of heating a
cooling ducts with pumps, valves, heat exchangers and o
components becomes very complicated. Some simplifica
is achieved by considering the advection of the tempera
field so that the temperature at one point depends on
history of that at another. This leads to interesting dynam
that should be taken into account in designing a ther
control system. In this paper we will focus on ducts a
networks, even though there are many other process co
problems in which the sensors and actuators are sepa
and the signal from one and the needs of the other are sh
in time.

This work is intended as an introduction to duct-rela
thermal problems in which the dynamic behavior of a sys
is affected by built-in delays. A common feature of the
problems is the finite time that a fluid takes to traverse
length of a duct. The present goal is to determine the kin
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physical effects that delay can cause, the ultimate goal b
an understanding of thermal networks and the desig
proper control strategies. Delay, of course, is of significa
only in the dynamics of time-dependent systems. We
assume, however, that the flow is generated at a constan
by a pump or similar device, and consider only the ther
aspects of the problem.

2. Delay equations and their applications

There are systems whose behavior depends signific
on past events or on some other function of the present s
These are modeled byfunctional equations in which the un-
known function occurs with different arguments. An exte
sive literature on functional equations exists (see, for ex
ple, [1,2]); some examples are given in the upper half of
ble 1. A special case is that ofdifference equations [3], in
which the unknown function is evaluated at arguments of
form (t + constant). The equation may be algebraic or d
ferential. Differential–difference equations can be classifi
as shown in the lower half of Table 1, based on the sig
the constant. We are interested here indelay equations [4,5]
which occur frequently in the analysis of thermal syste
In these the equation expresses some derivative of the
known function evaluated at one instant in terms of its low
order derivatives, if any, at the same or earlier instants.
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Nomenclature

A area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

c specific heat . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

i current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A
I nondimensional current
L duct length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
M heater mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
ṁ mass flow rate . . . . . . . . . . . . . . . . . . . . . . . kg·s−1

p mass flow fraction
P perimeter of cross-section . . . . . . . . . . . . . . . . . m
q ratio of residence times
Q heat rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W
R electrical resistance . . . . . . . . . . . . . . . . . . . . . . .�
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .◦C
Th temperature of fluid after heater . . . . . . . . . . .◦C
TH temperature of heater . . . . . . . . . . . . . . . . . . . .◦C
�T characteristic temperature difference . . . . . . .◦C
U heat transfer coefficient . . . . . . . . . W·m−2·K−1

x axial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α′ convection parameter
α′′ heat capacity parameter
γ heat loss parameter
ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

τ residence time . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
φ phase angle
ω frequency ofTin(t) . . . . . . . . . . . . . . . . . . . . . . s−1

Ω frequency ofT∞(t) . . . . . . . . . . . . . . . . . . . . . s−1

Subscripts

H heater
in inlet
out outlet
0 initial condition
∞ ambient
(̂·) amplitude
(·) mean value
(·)∗ dimensional quantity
such
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Table 1
Functional equations and differential–difference equations,t0, t1 andt2 > 0

Type of equation Example

Algebraic x(2t)= 0.5[x(t)+ t]
Ordinary differential ẍ(t)= ẋ(t/3)− x(t − 2)
Partial differential ∂u/∂t = ∂u/∂x + u(x, t − t0)

Integral x(t)= ∫ t+1
t k(s)x(s)ds

Integro-differential ẋ(t)= − ∫ t
t−r a(t − u)g(x(u))du

Retarded (delay) ẍ(t)= ẋ(t − t1)− x(t − t2)

Advanced ẏ(t)= y(t + t0)

Neutral ẋ(t)−Cẋ(t − t0)−Dx(t − t0)= 0
Mixed ẋ(t)+Ax(t − t0)+Bx(t + t0)= 0

There are mathematical aspects of delay equations,
as stability and chaotic behavior [6], that are of interes
practical applications. Delay equations have been used
variety of different fields, such as biomedical engineer
[7,8] and economics [9]. However, the literature conta
few applications to thermal systems. One exception is in
area of heat exchangers that have been studied by Gó
et al. [5] and Huang et al. [10], among others. Zhang
Nelson [11] also modeled the effect of a variable-air-volu
ventilating system on a building using delay, and Saman
Mahdi [12] analyzed pipe and fluid temperature variatio
due to flow.

3. Model of heat transfer in a duct

We begin with a model of thermal effects in a consta
area duct with a constant flow rate that is schematic
shown in Fig. 1. The inlet temperature isT ∗(t∗), the mass
in
i

flow rate of fluid isṁ, and the outlet temperature isT ∗
out(t

∗).
The duct is subject to heat loss through its surface of
form UP [T ∗ − T ∗∞(t∗)] per unit length, where the loca
fluid temperature isT ∗(x∗, t∗) and the ambient temperatu
is T ∗∞(t∗). U is the overall heat transfer coefficient that
assumed constant, andP is the perimeter at a cross secti
of the duct.x∗ is the longitude coordinate measured from
inlet andt∗ is time.

We assume that the flow is one-dimensional, and neg
axial conduction through the fluid and the duct. The gove
ing energy balance per unit length gives

ṁc
∂T ∗

∂x∗ + ρAc
∂T ∗

∂t∗
+UP

[
T ∗ − T ∗∞(t∗)

] = 0 (1)

whereA is the cross-sectional area of the duct andc is
the specific heat at constant pressure of the fluid.
ambient temperature can be written asT ∗∞(t∗) = T ∗∞ +
T

′∗∞(t∗), where the time-averaged and fluctuating parts h
been separated. We use the nondimensional space, tim
temperature variables

x = x∗

L
, t = t∗

τ
, T = T ∗ − T ∗∞

�T
(2)

whereL is the length of the duct,τ = AρL/ṁ is the time
taken to traverse the length of the duct, i.e., the reside
time. In this section the characteristic temperature differe
�T is arbitrary. Thus, Eq. (1) becomes

∂T

∂x
+ ∂T

∂t
+ γ

[
T − T ′∞(t)

] = 0 (3)

whereT ′∞(t) = T
′∗∞(t∗)/�T . The parameterγ = UPL/ṁc

represents the heat loss to the surroundings.
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Fig. 1. Flow in duct with heat loss.
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Fig. 2. Boundary and initial conditions inx–t space.

Using the method of characteristics [13], the first-or
partial differential equation (3) is reduced to

dx = dt = − dT

γ [T − T ′∞(t)] (4)

From this, two integrals

C1 = x − t, (5)

C2 = eγ tT − γ

t∫
0

eγ sT ′∞(s)ds (6)

are obtained, and the general solution can be written as
as a function of the other. Thus, for example, we can wri

T (x, t)= e−γ t

[
f (x − t)+ γ

t∫
0

eγ sT ′∞(s)ds

]
(7)

wheref is an arbitrary function. The boundary conditio
T (0, t) = Tin(t) andT (x,0) = T0(x) are shown in Fig. 2
Using these, the solution becomes

T (x, t)=


Tin(t − x)e−γ x + γ e−γ t

∫ t

t−x e
γ sT ′∞(s)ds

for t � x

T0(x − t)e−γ t + γ e−γ t
∫ t

0 e
γ sT ′∞(s)ds

for t < x

(8)

The t < x part of the solution is applicable to the brie
transient period of time in which the fluid at timet = 0 has
still not left the duct. The latert > x part depends on th
temperature of the fluid entering atx = 0. The temperature
Tout(t), at the outlet section,x = 1, is given by

Tout(t)=


Tin(t − 1)e−γ + γ e−γ t

∫ t

t−1 e
γ sT ′∞(s)ds

for t � 1
T0(1− t)e−γ t + γ e−γ t

∫ t

0 e
γ sT ′∞(s)ds

for t < 1

(9)

It can be observed that, after an initial transient, the i
and outlet temperatures are related by a unit delay. The o
temperature is also affected by the heat loss parameteγ ,
and the ambient temperature change,T ′∞(t). The following
are some special cases of the outlet temperature.

3.1. Perfectly insulated duct

If γ = 0 the outlet temperature simplifies to

Tout(t)=
{
Tin(t − 1) for t � 1
T0(1− t) for t < 1

(10)

After the initial transient, the outlet temperature is the sa
as the inlet temperature but at a previous instant in time.

3.2. Constant ambient temperatures

For thisT ′∞ = 0, and Eq. (9) becomes

Tout(t)=
{
Tin(t − 1)e−γ for t � 1
T0(1− t)e−γ t for t < 1

(11)

This is similar to Eq. (10), but with an exponential drop d
to heat transfer.

3.3. Periodic inlet and ambient temperature

We take

Tin(t)= T in + T̂in sinωt (12)

T ′∞(t)= T̂∞ sinΩt (13)

so that Eq. (9) becomes

Tout(t)=



[T in + T̂in sinω(t − 1)]e−γ

+ T̂∞γ

√
−2e−γ cos1+e−2γ

γ 2+Ω2 sin(Ωt + φ)

for t � 1
T0(1− t)e−γ t

+ γ

γ 2+Ω2 T̂∞
√
γ 2 +Ω2 sin(Ωt + φ′)

for t < 1

(14)

where
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Tin(t) Th(t) T (x, t) Tout (t)

T∞(t)Heater

ṁ
�

Fig. 3. Flow in duct with heater.
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tanφ = −γ (1− e−γ cos1)+ e−γΩ sin 1

Ω(1− e−γ cos 1)− γ e−γ sin 1
(15)

tanφ′ = −Ω

γ
(16)

The outlet temperature has frequencies that come from
cillations in the inlet as well as the ambient temperatu
A properly-designed control system that senses the o
temperature must take the frequency dependence of its
plitude and phase into account. There are several comp
ties that must be considered in practical applications to h
ing or cooling networks, some of which are analyzed bel

4. Thermal inertia and periodic heating

In the previous section, the inlet temperatureTin(t) could
be varied at will. In reality though, heating or cooling
usually through devices that have a finite response time
study this let us consider an electric heater placed at the
of the duct, as shown in Fig. 3. The current in the heater
be eitheri or zero. The finite mass of the heater,M, makes it
a first-order system. The heater raises the temperature o
fluid from Tin(t) to Th(t), which is the temperature just aft
the heater, whileTH(t) is the temperature of the heater itse
The nondimensional governing equations for heat tran
from the heater to the fluid and for the temperature of
heater are

Th − Tin = α′
[
TH − 1

2
(Tin + Th)

]
(17)

α′′ dTH

dt
= α′

[
1

2
(Tin + Th)− TH

]
+ I (t)2 (18)

whereα′ = hHAH/ṁc andα′′ = McH/ṁcτ . hH is the heat
transfer coefficient between the heater and the fluid,AH is
the heat transfer surface area, andcH is the specific hea
of the material of the heater. The average fluid tempera
(Tin + Th)/2 is used for the heat transfer calculation. T
currentI (t) is nondimensionalized by(ṁc�T/R)1/2, where
R is the electrical resistance of the heater. Choosing�T =
i2R/ṁc, we haveI (t) = 1 for heater on, andI (t) = 0 for
heater off.

EliminatingTH from Eqs. (17) and (18), we get

α
dTh

dt
+ Th = Tin(t)+ β

dTin

dt
+ I (t)2 (19)

whereα = α′′(1/α′ + 1/2) andβ = α′′(1/α′ − 1/2). Solv-
ing, we have
-

e

Th(t)= Th(0)e−t/α + β

α

[
Tin(t)− e−t/αTin(0)

]
+ e−t/α

α

t∫
0

es/α
[
α − β

α
Tin(s)+ I (s)2

]
ds (20)

Th(t) is the entrance temperature to be used instead ofTin(t)

in Eqs. (8) and (9) to obtain the temperature distribution
the duct.

WhenT ′∞ = 0 andTin is constant we find that

Tout(t)=


[T0(0)e−(t−1)/α + Tin(1− e−(t−1)/α)

+ e−(t−1)/α

α

∫ t−1
0 es/αI (s)2 ds]e−γ

for t � 1
T0(1− t)e−γ t for t < 1

(21)

We will now assume that both the heating and the respo
of the system are periodic in time. At the instant the he
switches on, the temperature distribution isT1(x). The
heater runs for a time interval oft1 with I (t) = 1 at which
time it switches off. The temperature distribution at th
instant isT2(x). The heater-off interval withI (t) = 0 is t2,
at the end of which the temperature distribution goes b
to T1(x), and the heater switches on. Being periodic,
temperature distributions should satisfy

T2(x)=
 [Tin + 1+ e−(t1−x)/α{T1(0)− Tin − 1}]e−γ x

if x � t1
T1(x − t1)e

−γ t1 if x > t1

(22)

and

T1(x)=
 [Tin + e−(t2−x)/α{T2(0)− Tin}]e−γ x

if x � t2
T2(x − t2)e

−γ t2 if x > t2

(23)

Fig. 4(a) shows the spatial temperature distribution
the instant the heater is started and when it is stoppe
Fig. 4(b) the temporal behaviors of the temperature of
fluid just after the heater,x = 0, and at the outlet,x = 1,
are indicated;t = 0 corresponds to the instant the hea
is switched on. In this example it appears that during
interval the heater is on, 0< t � 0.25, the temperature o
the fluid at the outlet is actually decreasing. Thus there
obvious difficulties associated with using the temperatur
the outlet directly as a control signal to switch the heater
and on.

5. Closed loop

In a closed loop the effect of delay at the outlet
immediately fed back into the inlet. Let us consider the lo
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Fig. 4. Temperatures for duct with periodic heating, (a) spatial distribut
T1(x) is at end of off-period andT2(x) is at end of on-period, and
(b) temporal dependence,x = 0 is just after heater andx = 1 is at end of
duct. Parameters:t1 = 0.25, t2 = 0.5, α = 0.5, Tin = 0.5, γ = 0.5.

(a)

(b)

Fig. 5. (a) Closed loop, (b) open loop with branching.

schematically shown in Fig. 5(a). The flow is pumped i
counterclockwise direction at a constant mass flow rateṁ.
a, b, c andd are four points along the loop. Heat is put
Fig. 6. Amplitude of temperature at pointb, T̂b , for a closed loop.
Parameters:γbc = γda = 0.01, Qin = Qout = 0, Q̂in = Q̂out = 1, φ = 0,
q = 1.

betweena andb by a heat exchanger, and taken out betw
c andd by another.

Using Eq. (9), we can write relations between the in
and outlet of sidesbc andda of the loop to get

Tc(t)=
[
Tb(t − 1)e−γbc + γbce

−γbct

t∫
t−1

eγbcsT ′∞(s)ds

]
(24)

Ta(t)=
[
Td

(
t − 1

q

)
e−γda

+ qγdae
−qγdat

qt∫
qt−1

eqγdasT ′∞(s)ds

]
(25)

whereTa(t), Tb(t), Tc(t) and Td(t) are the temperature
at the respective points,T0(x) is the initial distribution of
temperature, andq = τbc/τda . We have ignored the initia
transient. Energy balances at the heat exchangers give

Tb(t)− Ta(t)=Qin(t) (26)

Tc(t)− Td(t)=Qout(t) (27)

where the heat rates have been nondimensionalize
ṁc�T . Fig. 6 shows the amplitude response of the loop
periodic heat flux where

Qin(t)=Qin + Q̂in sinωt (28)

Qout(t)=Qout + Q̂outsin(ωt + φ) (29)

The amplitude is greatest forω = 1.

6. Branching

Finally, we consider the branched open loop sho
schematically in Fig. 5(b). The two branchesa and b
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Fig. 7. Amplitude of outlet temperature,̂Tout for branching. Parameters
T in = 0, T̂in = 1,ω = 1, γa = γb = 0. Results for two different values ofp
are shown.

have different geometrical, flow and thermal characteris
Because of this the delay caused in each branch as we
the heat loss parameters are different. The temperature
outlet is a result of the mixing of the two streams.

Nondimensionalizing the governing equations with
spect to the characteristic values in brancha, we find, on
ignoring the initial transient, that

Tout(t)= p

[
Tin(t − 1)e−γa + γae

−γat

t∫
t−1

eγasT ′∞,a(s)ds

]

+ (1− p)

[
Tin

(
t − 1

q

)
e−γb

+ qγbe
−qγbt

qt∫
qt−1

eqγbsT ′∞,b(s)ds

]
(30)

where the mass flow fraction is

p = ṁa

ṁa + ṁb
(31)

and the ratio of residence times is

q = τa

τb
(32)

The parameters in each branch are taken to be different
As an example we consider a sinusoidal inlet tempera

whereTin is given by Eq. (12). For simplicity we takeγa =
γb = 0. The outlet temperature,Tout(t), is also sinusoidal
but the interference between the flows which come thro
the two different branches affect its amplitude and ph
Fig. 7 shows the amplitudêTout of Tout(t) for different values
of p. In the extreme case ofp = 0.5, q = 0.2414, the two
branches cancel each other completely. It can be rea
appreciated that using the outlet temperature for con
purposes in this case would be impossible.
s
e

7. Conclusions

Delay in thermal systems with long ducts is due to the
nite time that the fluid takes to traverse its length. This de
time becomes an important factor in dynamic problems s
as when the inlet or ambient temperature is time-depend
or when a sensor at one point controls an actuator at ano
Delay must be considered when modeling the system s
it can adversely affect its performance, or even contribut
the instability of a thermal control system.

We have discussed the behavior of some ducted sys
along with the effects of thermal inertia, closed loops a
branching. The ultimate objective is to understand
design better heating and cooling networks for buildings
districts which are often very complicated.
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